# Rancangan Blueprint Alat Cetak Kue Balok yang Ergonomis dengan Metode Ergonomic Function Deployment (EFD)

# Gita Permata Liansari 1, Dwi Novirani 2, Rifqi Nanda Subagja 3

<sup>1,2)</sup> Fakultas Teknologi Industri Jurusan Teknik Industri Institut Teknologi Nasional <sup>3)</sup> Alumni Jurusan Teknik Industri Institut Teknologi Nasional JI. Penghulu K.H. Hasan Mustafa No. 23 Bandung 40124

Email: gitapermata@itenas.ac.id 1, dwinovirani@gmail.com 2, rifqinandasubagja@gmail.com 3

#### **Abstrak**

Kue balok merupakan makanan ringan tradisional yang saat ini menjadi kegemaran bagi masyarakat kota Bandung. Semakin tinggi permintaan konsumen terhadap kue balok, akan mengakibatkan produsen kue balok semakin sering berinteraksi terhadap alat cetak kue balok. Namun ternyata alat cetak kue balok yang digunakan oleh produsen kue balok saat ini merupakan alat cetak kue balok yang belum mempertimbangkan aspek ergonomis ENASE (Efektif, Nyaman, Aman, Sehat, dan Efisien). Beberapa masalah yang dialami oleh produsen kue balok saat menggunakan alat cetak kue balok saat ini, diantaranya: pinggang dan punggung sakit karena terlalu sering membungkuk, panas yang berasal dari arang sebagai bahan bakar alat cetak kue balok langsung memapar tubuh produsen, tidak adanya bahan isolator pada pegangan alat cetak kue balok, dll. Masalah ini akan berisiko terhadap keselamatan para produsen alat cetak kue balok, bila semakin sering berinteraksi dengan alat cetak kue balok saat ini tersebut. Jika semakin sering produsen kue balok berinteraksi, maka akan semakin tinggi pula kemungkinan masalah-masalah tersebut dirasakan oleh produsen. Oleh sebab itu dalam penelitian ini dilakukan perancangan alat cetak kue balok dengan menggunakan metode EFD (Ergonomic Function Deployment). Dalam metode ini perancangan produk dilakukan dengan mempertimbangkan aspekaspek ergonomis ENASE.

# Kata kunci: Ergonomic Function Deployment, Ergonomis, Perancangan, Alat Cetak Kue Balok, ENASE

#### Pendahuluan

Kota Bandung adalah salah satu kota yang dikenal oleh wisatawan lokal dan asing sebagai kota kuliner. Salah satu jajanan tradisional yang saat ini dikenal di kota Bandung adalah kue balok. Kue balok adalah jajanan tradisional berbentuk balok. Semakin maraknya minat konsumen terhadap kue tradisional ini membuat kue balok tidak hanya dapat ditemui pada penjual gerobak pinggir jalan. Saat ini kue balok dapat juga dibeli di kafe dan di kedai-kedai seputaran kota Bandung.

Semakin dikenalnya kue balok di kalangan warga kota Bandung membuat para produsen kue balok berlomba-lomba untuk memberikan perbedaan antara kue balok yang dijual oleh satu produsen dengan produsen lainnya. Variasi rasa adalah salah satu cara produsen untuk menarik minat para konsumennya. Namun hal ini tentu berkonsekuensi terhadap peningkatan permintaan terhadap kue balok tersebut.

Semakin tingginya permintaan kue balok berarti semakin sering produsen kue balok berinteraksi memasak dengan alat cetak kue balok tersebut. Namun saat ini alat cetak kue balok masih belum memperhatikan kenyamanan dan keselamatan kerja. Terlihat dari banyaknya keluhan produsen kue balok, yaitu pinggang dan punggung yang sakit

karena terlalu sering membungkuk, panas yang yang langsung memapar produsen kue balok yang berasal dari arang sebagai bahan bakar alat cetak kue balok, tidak adanya bahan isolator pada pegangan alat cetak kue balok, sehingga produsen biasanya menambah kain sebagai bahan isolatorya, dll.

Jika dilihat dari keluhan-keluhan tersebut dapat terlihat jelas bahwa alat cetak kue balok saat ini tidak memperhatikan prinsip ENASE (efektif, nyaman, aman, sehat, dan Padahal semakin banyaknya efisien). permintaan kue balok dari konsumen akan meningkatkan pula pada risiko kecelakaan kerja yang dapat dialami oleh produsen kue balok. Oleh sebab itu pada penelitian ini bertuiuan untuk mengusulkan perancangan alat cetak kue balok kepada produsen pembuat alat cetak tersebut dengan menggunakan metode Ergonomic Function Deployment (EFD) dengan memperhatikan prinsip ENASE.

#### Studi Literatur

#### **Definisi Quality Function Deployment**

Quality Function Deployment (QFD) adalah metode perencanaan dan pengembangan secara terstruktur yang memungkinkan tim pengembangan mendefinisikan secara jelas kebutuhan dan harapan pelanggan, dan mengevaluasi kemampuan produk atau jasa

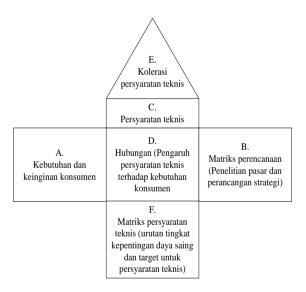
secara sistematik untuk memenuhi kebutuhan dan harapan tersebut (Ariani, 2002). Menurut Subagyo dalam Marimin 2004, *Quality Function Deployment* adalah suatu cara untuk meningkatkan kualitas barang atau jasa dengan memahami kebutuhan konsumen, lalu menghubungkannya dengan ketentuan teknis untuk menghasilkan barang atau jasa ditiap tahap pembuatan barang atau jasa yang dihasilkan. QFD digunakan untuk memperbaiki pemahaman tentang pelanggan dan untuk mengembangkan produk, jasa serta proses dengan cara yang lebih berorientasi kepada pelanggan (Rampersad, 2006).

# **Manfaat Quality Function Deployment**

Terdapat beberapa manfaat QFD (Ariani, 2002) diantaranya:

- Mengurangi Biaya
   Biaya dapat dikurangi karena produk yang
   dibuat merupakan produk yang berasal dari
   kebutuhan konsumen. Jenis-jenis biaya
   produksi yang dapat dikurangi dengan
   menerapkan QFD dalam perancangan
   produk, diantaranya: biaya bahan baku,
   biaya overhead, dan biaya tenaga kerja.
- Meningkatkan Pendapatan
   Pendapatan perusahaan akan meningkat karena produk yang dijual merupakan produk yang merepresentasikan kebutuhan konsumen sehingga secara tepat produk yang dihasilkan adalah produk yang benarbenar dibutukan oleh konsumen.
- 3. Mengurangi Waktu Produksi
  Dalam perancangan produk dengan QFD,
  terdapattim pengembangan produk yang
  memfokuskan pada program
  pengembangan kebutuhan konsumen
  terhadap suatu produk.

#### **Tahapan Quality Fuction Deployment**


Menurut Subagyo dalam Marimin (2004), terdapat 6 tahapan dalam QFD, diantaranya:

- Mengidentifikasikan kemauan pelanggan. Dalam hal ini, pelanggan atau konsumen ditanya mengenai sifat yang diinginkan dari suatu produk.
- Mempelajari ketentuan teknis dalam menghasilkan barang atau jasa. Hal ini didasarkan data yang tersedia. Aktivitas dan sarana yang digunakan dalam menghasilkan barang atau jasa, dalam rangka menentukan mutu pemenuhan kebutuhan pelanggan.
- Hubungan antara keinginan pelanggan dengan ketentuan teknis. Hubungan ini dapat berpengaruh kuat, sedang atau lemah. Setiap aspek dari konsumen diberi bobot, untuk membedakan pengaruhnya terhadap mutu produk.

- 4. Perbandingan kinerja pelayanan. Tahap ini membandingkan kinerja perusahaan dengan pesaing.
- Evaluasi pelanggan untuk membandingkan pendapat pelanggan tentang mutu produk yang dihasilkan oleh perusahaan dengan produk pesaing. Menggunakan Skala Likert dengan pendekatan distribusi Z, kemudian dibuat rasio antara target dengan mutu setiap kategori.
- 6. *Trade off* untuk memberikan penilaian pengaruh antar aktivitas atau sarana yang satu dengan lainnya.

## **Matriks House of Quality (HOQ)**

Matriks HOQ atau rumah kualitas merupakan bentuk umum dari metode QFD.Matriks HOQ menampilkan strukur perancangan produk yang menyerupai bentuk rumah.Matriks HOQ ini terdiri dari dua bagian utama, yaitu bagian horizontal (bagian A) dari matriks berisi informasi yang terkait dengan kebutuhan konsumen atau disebut juga dengan *customer table*, sedangkan bagian vertikal (bagian C) dan matriks berisi informasi teknis sebagai respon bagi input konsumen dan disebut dengan *technical table*.Pada Gambar 1 ditampilkan bagian-bagian detail dari HOQ.



Gambar 1: Matriks House of Quality

Berikut penjelasan bagian pada HOQ pada Gambar 1.

- 1. Bagian A
  - Berisi data atau informasi kebutuhan dan keinginan konsumen yang diperoleh dari riset pasar yang dilakukan sebagai tahap awa perancangan produk.
- 2. Bagian B
  - Pada bagian B ini terdapat 3 informasi, vaitu:
  - a. Tingkat kepentingan kebutuhan dan keinginan konsumen.

- b. Data tingkat kepuasan konsumen terhadap produk yang dihasilkan oleh perusahaan dan produk pesaing.
- c. Tujuan strategis untuk produk atau jasa baru yang akan dikembangkan.

#### 3. Bagian C

Berisi persyaratan teknis untuk produk yang dirancang. Data berikut merupakan turunan dari data kebutuhan dan konsumen pada bagian A.

4. Bagian D

Berisi mengenai penilaian manajemen mengenai kekuatan hubungan antara elemen-elemen yang terdapat pada bagian persyaratan teknis (matriks C) terhadap kebutuhan konsumen (matriks A) yang dipengaruhinya.Kekuatan hubungan ditunjukkan dengan menggunakan simbol tertentu.

5. Bagian E

Menunjukan korelasi antara persyaratan teknis yang satu dengan persyaratan-persyaratan teknis yang lainyang terdapat pada matriks C. Korelasiantara kedua persyaratan teknis tersebut ditunjukan dengan menggunakan simbol-simbol tertentu.

6. Bagian F

Pada bagian F ini terdapat 3 informasi, vaitu:

- a. Urutan tingkat kepentingan (ranking) persyaratan teknis.
- Informasi hasil perbandingan kinerja persyaratan teknis produk terhadap kinerja produk pesaing.
- c. Target kinerja persyaratan teknis produk baru yang dikembangkan.

#### Langkah Pembuatan HOQ

Berikut ini adalah langkah-langkah pembuatan House of Quality:

- Melakukan identifikasi semua kebutuhan dan keinginan konsumen terhadap produk atau jasa yang ada. Lebih lanjut, kebutuhan dan keinginan konsumen ini disebutkan sebagai karakteristik konsumen.
- 2. Mengidentifikasi tingkat kepentingan konsumen. Masukkan nilai-nilai tersebut kedalam kolom tingkat kepentingan (*Importance*) pada HOQ.
- Menerjemahkan seluruh kebutuhan dan keinginan konbsumen ke dalam karakteristik desain/teknik. Seluruh datadata tersebut diuraikan dan dicatat pada bagian atas HOQ.
- 4. Menentukan hubungan yang terjadi antara masing-masing karakteristik konsumen dengan karakteristik teknik. Adapun hubungan yang dimaksud dapat dibedakan menjadi tiga kategori, yaitu

- hubungan kuat, sedang, dan lemah masing-masing dengan lambing penulisan yang berbeda-beda. Hubungan ini digambarkan pada bagian tengah HOQ.
- Menentukan target terhadap masingmasing karakteristik teknik yang ada, yang akan diusahakan pencapaiannya guna memenuhi keinginan dan kebutuhan konsumen. Nilai-nilai tersebut dimasukan ke dalam kolom target, yang terletak di bagian bawah HOQ.
- 6. Target yang telah ditentukan dapat ditingkatkan atau diturunkan sesuai dengan perkembangan yang diinginkan.

#### **Ergonomic Function Deployment (EFD)**

EFD adalah metode untuk memudahkan selama proses perancangan, pembuatan keputusan direkam dalam bentuk matriksmatriks sehingga dapat diperiksa ullang serta dimodifikasi di masa yang akan dating, biasanya unutuk mengetahui ergonomis atau tidaknya hasil suatu rancangan (Wibowo, **EFD** merupakan 2010). metode pengembangan QFD dalam dimana perancangan produk selain memperhatikan kebutuhan dan keinginan konsumen. diperhatikan pula aspek ergonomi produk saat digunakan. EFD merupakan pengembangan dari QFD (Quality Function Deployment) yaitu dengan menambahkan hubungan baru antara kebutuhan konsumen dengan aspek ergonomi dari produk (Ulrich, 2001). Hubungan antara kebutuhan konsumen dengan aspek-aspek ergonomi tersebut ditampilkan dalam matriks mempertimbangkan HOQ vang aspek Gambar 2. Penjelasan ergonomi pada mengenai bagian-bagian pada HOQ pada EFD sebagai berikut:

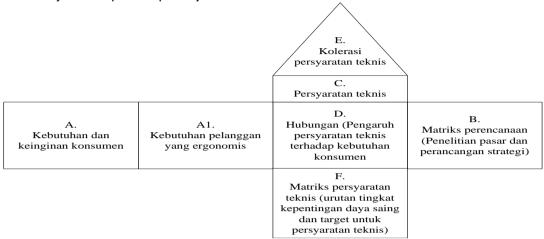
Bagian A

Berisi sejumlah kebutuhan dan keinginan pelanggan, penentuan keinginan konsumen inilah yang biasanya ditentukan berdasarkan penelitian pasar kualitatif.

2. Bagian A1

Merupakan terjemahan kebutuhan konsumen yang termasuk dalam aspek ergonomi. Penerjamahan ini harus dilakukan secara tepat agar dapat memudahkan tim perancanga menentukan karakteristik aspek teknisnya.

3. Bagian B


Pada bagian B ini terdapat 3 informasi, yaitu:

- 1. Tingkat kepentingan, kebutuhan dan keinginan konsumen.
- 2. Data tingkat kepuasan konsumen terhadap produk yang dihasilkan oleh perusahaan dan pesaing.

3. Tujuan strategis untuk produk atau jasa baru akan dikembangkan.

# 4. Bagian C

Berisi tentang karakteristik teknis ini biasanya yang mendepkrisikan produk yang dirancang.Karekter teknis ini biasanya merupakan penterjemah dari kebutuhan/keinginan pelanggan. Untuk setiap karakteristik teknis ini ditentukan satuan pengukuran, direction of goodness dan target yang harus dicapai. Sedangkan direction of goodness dibagi menjadi tiga:



Gambar 2: Matriks HOQ dengan Aspek Ergonomi

- 1. The more better (MTB) atau semakin besar semakin baik, target maksimalnya adalah tidak terbatas.
- 2. The less the better (LTB) atau semakin kecil semakin baik, target maksimalnya adalah nol.
- The is the best (TB) atau nilai optimal, target maksimalnya adalah sedekat mungkin dengan suatu nilai nominal tidak terdapat variasi sekitar nilai tersebut.

#### Bagian D

Berisi penilaian manajemen mengenai kekuatan hubungan antara elemenelemen yang terdapat pada bagian persyaratan teknis (matriks C) terhadap kebutuhan konsumen (matriks A) yang dipengaruhinya. Kekuatan hubungan ditunjukan dengan menggunakan simbol tertentu.

#### 6. Bagian E

Bagian kelima dari HOE adalah Technical correlation, matriks yang bentuknya menyerupai atap (roof). Matriks ini menunjukan hubungan antara satu dengan atribut yang yang lain.Kekuatan hubungan dapat dilihat pada Tabel 2.1.

# 7. Bagian F

Bagian paling bawah dari HOE ini menunjukan daftar spesifikasi teknik yaitu akan memuaskan kebutuhan konsumen. Matriks ini berisi tiga jenis data, yaitu:

- 1. Technical Response Priorities, urutan tingkat kepentingan (ranking) persyaratan teknik.
- 2. Competitive Technical Benchmark, informasi hasil perbandingan kinerja persyaratanteknis produk yang dihasilkan dengan perusahaan terhadap kinerja produk pesaing.
- 3. Target Technical, target kinerja persyaratan teknis untuk produk atau jasa baru yang akan dikembangkan.

# Metodologi Penelitian

Pada Gambar 3 ditampilkan bagan metodologi penelitian sebagai tahapantahapan yang dilakukan dalam perancangan alat cetak kue balok ini. Sedangkan penjelasan mengenai tahapan-tahapan penelitian, meliputi:

#### Perumusan Masalah

Merupakan tahapan awal dalam penelitian perancangan alat cetak kue balok. Pada tahapan ini dilakukan perumusan masalah terkait dengan hal-hal yang mengganggu atau memberikan ketidaknyamanan kepada para produsen kue balok di sekitaran kota Bandung. Tahapan ini dilakukan untuk mengetahui keluhan-keluhan produsen kue balok dalam penggunaan alat cetak kue balok yang telah ada saat ini.

#### Penentuan menggunakan Metode EFD

Tahapan selanjutnya yang dilakukan dalam penelitian ini adalah menentukan penggunaan metode perancangan produk yaitu metode EFD. Metode EFD merupakan metode perancangan produk yang mempertimbangkan pula aspek ergonomis dalam penggunaan produk yang dirancang. Selain itu pada tahapan ini juga dipertimbangan penggunaan produk dari prinsip ENASE.

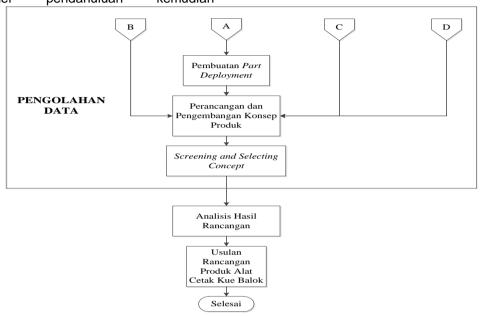
### Pengumpulan Data

Dalam penelitian dikumpulkan data-data sebagai data mentah. Data-data yang menjadi data mentah penelitian, diantaranya:

- 1. Data Antropometri
- 2. Data Karakteristik Responden
- 3. Data Atribut Produk
- 4. Data sampling
- 5. Data Geometri Alat Cetak Kue Balok
- Data Alat Cetak Kue Balok saat ini



Gambar 3: Bagan Metodologi Penelitian


# Pengolahan Data

Beberapa langkah yang dilakukan dalam pengolahan data dalam penelitian perancangan alat cetak kue balok. Langkah pengolahan data, diantaranya:

 Penyusunan dan Penyebaran Kuisioner Pendahuluan Kuisioner Pendahuluan disebarkan kepada 30 responden. Kuisioner pendahuluan bertujuan untuk melakukan pengujian data. Kuisioner disusun dari data atribut produk yang kemudian dikembangkan menjadi kuisioner tingkat kepentingan dan

kuisioner tingkat kepuasan produk. Kuisioner tingkat kepentingan merupakan kuisioner yang mengukur tingkat kepentingan relatif dari setiap atribut produk yang diperoleh dari data mentah. Sedangkan kuisioner tingkat kepuasan merupakan kuisioner yang dikumpulkan untuk mengukur kepuasan produsen kue balok dalam menggunakan alat cetak kue balok yang ada saat ini.

 Pengujian Validitas dan Reliabilitas Kuisioner Pendahuluan Data hasil kuisioner yang diperoleh dari kuisioner pendahuluan kemudian dilakukan pengujian validitas dan reliabilitas. Uji validitas bertujuan untuk menguji alat ukur (kuisioner) penelitian. Sedangkan uji reliabilitas bertujuan untuk melakukan pengujian kekonsistenan jawaban responden (produsen kue balok) dari kuisioner pendahuluan yang telah disebar.



Gambar 3: Bagan Metodologi Penelitian (lanjutan)

Keseluruhan kuisioner diharapkan lulus uii validitas dan reliabilitas. Jika penguijan validitas dan reliabilitas tidak menunjukan valid dan tidak reliable maka kuisioner sebelum disebarkan kepada jumlah sampel yang ditentukan dalam data sampling, perlu dilakukan penyusunan kembali, yaitu dengan mengubah kalimat pertanyaan / pernyataan kuisioner yang / tidak reliable valid untuk menghindari makna ambigu dalam pertanyaan / pernyataan dalam kuisioner.

- 3. Perancangan dan Penyebaran Kuisioner Penelitian Kuisioner penelitian merupakan kuisioner yang telah diuji dan lolos uji validitas dan reliabilitas.Kuisioner penelitian kemudian disebar kepada sejumlah responden yang telah ditentukan dalam data sampling pada fasa pengumpulan data sebelumnya.
- 4. Penyusunan HOE Pada tahap ini dibuat rumah ergonomic yang akan menjadi dasar dalam pengolahan data dalam perancangan produk alat cetak kue balok. Terdapat 6 bagian yang dibuat pada HOE seperti ditampilkan pada Gambar 2.

- 5. Pembuatan Matriks Part Deployment Matriks Part deployment digunakan untuk menentukan komponen-komponen yang digunakan dalam perancangan produk. Tahapan dalam pembuatan part deployment, diantaranya:
  - a. Menentukan prioritas spesifikasi teknis (technical response)
  - b. Menjelaskan setiap spesifikasi teknis (planning part response)
  - c. Menghitung nilai kotribusi untuk setiap spesifikasi teknis (*contribution*)
  - d. Menentukan hubungan antara spesifikasi teknis dan nilai kontribusinya (technical response and planning part response correlation)
  - e. Menilai interaksi antar spesifikasi teknis (Korelasi *Planning Part Response*)
- 6. Perancangan dan Pengembangan Konsep Produk
  Merupakan tahapan perancangan dan pengembangan usulan produk alat cetak kue balok yang baru berdasarkan dari pengolahan data yang telah dilakukan
- 7. Screening dan Selecting Concept

Menentukan beberapa alternatif perancangan alat cetak kue balok dan menentukan alternatif terpilih. Alternatif yang terpilih pada tahap ini kemudian akan dibuat prototypenya atau merupakan rancangan produk yang akan menjadi usulan dari perancangan alat cetak kue balok yang dibuat.

#### **Analisa Hasil Rancangan**

Analisa dilakukan dengan blue print, bertujuan untuk membandingkan antara alternatif rancangan produk alat cetak kue balok dengan kebutuhan dan keinginan produsen kue balok yang telah disusun dengan HOE.

# Usulan Rancangan Produk Alat Cetak Kue Balok

Tahapan berikut merupakan tahapan akhir dalam penelitian. Pada tahap ini diberikan usulan rancangan yang telah dibandingkan dengan kebutuhan dan keinginan konsumen dari HOE.

#### Pengumpulan dan Pengolahan Data

# Pengumpulan Data Data Antropometri

Data antropometri yang digunakan dalam perancangan alat cetak kue balok ini diantaranya:

- Pangkal Kaki ke Lantai (PKL)
   Merupakan dimensi dari pinggang ke lantai.
   Dimensi ini digunakan untuk menentukan tinggi meja dari alat cetak kue balok.
- Lebar Bideltoid (LBd)
   Merupakan dimensi lebar bahu. Dimensi ini digunakan untuk menentukan panjang wadah bahan bakar.
- Rentangan Tangan (RT)
   Merupakan panjangnya jangkauan vertikal tangan seseorang. Dimensi ini digunakan untuk menentukan panjang wadah bahan bakar.
- Jangkauan Ujung Lengan Horizontal (JUHT)
   Merupakan panjangnya jangkauan horizontal tangan seseorang. Dimensi ini digunakan untuk menentukan lebar wadah bahan bakar.
- Siku ke Lantai (SL-PKL)
   Merupakan tinggi siku seseorang ke
   pinggangnya. Dimensi ini digunakan untuk
   menentukan tinggi penutup alat cetak kue
   balok.
- 6. Diameter Genggam Maksimum (DG)

Merupakan diameter genggam maksimum sesorang. Dimensi ini digunakan untuk menentukan dimensi diameter bahan baku isolator / pegangan alat cetak tersebut.

# Data Karakteristik Responden

Responden dalam penelitian ini merupakan produsen kue balok atau dapat juga disebut sebagai konsumen / pengguna alat cetak kue balok.

#### **Data Atribut Produk**

Atribut produk diturunkan berdasarkan aspek-aspek ergonomis ENASE. Atribut-atribut produk ini yang kemudian menjadi dasar bagi atribut-atribut produk dari alat cetak kue balok yang akan dirancang. Atribut-atribut penelitian ini yang nantinya akan diterjemahkan sebagai kebutuhan konsumen. Pada Tabel 1 ditampilkan atribut penelitian untuk merancang alat cetak kue balok yang mempertimbangkan ENASE (Efektif, Nyaman, Aman, Sehat, Efisien).

Tabel 1: Atribut penelitian perancangan alat cetak kue balok

| No | Aspek<br>Ergonomi | Definisi                                                                 | Atribut Penelitian                                                                    |
|----|-------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|    | Efektif           | Sasaran                                                                  | Dimensi Cetakan<br>Presisi                                                            |
| 1  |                   | dan tujuan<br>tercapai                                                   | Bahan Alat Cetak<br>Anti Lengket                                                      |
|    |                   | tercapai                                                                 | Bahan Alat Cetak<br>Food Grade                                                        |
| 2  | Nyaman            | Minimasi<br>ketidaknya<br>manan /<br>kecemasa<br>n <i>user</i>           | Panas dari alat<br>cetak tidak<br>memapar<br>langsung kepada<br>user                  |
|    |                   | dalam<br>mengguna<br>kan produk                                          | Meja mampu<br>disesuaikan<br>tingginya sesuai<br>kebutuhan                            |
|    | Aman              | Minimasi<br>risiko bagi<br><i>user</i> saat<br>berinteraks<br>i langsung | Alat Cetak aman<br>sat digunakan                                                      |
| 3  |                   |                                                                          | Pegangan dan penutup cetakan tidak panas                                              |
|    |                   | dengan<br>produk                                                         | Percikan api dari<br>arang tidak<br>mengenai <i>user</i>                              |
| 4  | Sehat             | Terhindar<br>dari<br>gangguan<br>kesehatan                               | Asap tidak<br>memapar<br>langsung kepada<br><i>user</i>                               |
|    |                   | Minimasi                                                                 | Alat Cetak mudah digunakan                                                            |
| 5  | Efisien           | biaya,<br>upaya, dan                                                     | Alat Cetak tidak<br>mudah rusak                                                       |
|    |                   | waktu<br>dalam<br>penggunaa<br>n produk                                  | Kuantitas lubang<br>kue pada cetakan<br>lebih banyak dari<br>umumnya<br>Waktu memasak |
|    |                   |                                                                          | vvaktu iiieiiiasak                                                                    |

|  | dapat lebih cepat |
|--|-------------------|
|  | dari umumnya      |

#### **Data Sampling**

Teknik Sampling yang digunakan adalah purposive sampling, sedangkan ukuran sampel dalam penelitian menggunakan Metode Slovin maka diperoleh bahwa jumah sampel penelitian adalah 47 orang operator kue balok.

#### Data Geometri Alat Cetak Kue Balok

#### 1. Meja Penyangga Utama

Komponen ini berfungsi sebagai penyangga utama dari 3 komponen yang diletakkan diatasnya yaitu wadah bahan bakar, cetakan, dan penutup. Sedangkan dimensi meja penyangga utama, seperti panjang, lebar, tinggi, dan berat secara berturut-turut adalah 50 cm, 30 cm, 100 cm, 5 kg.

#### 2. Wadah Bahan Bakar

Komponen ini merupakan tempat penyimpanan bahan bakar utama yang sering digunakan konsumen pada umumnya, yaitu arang. Sedangkan dimensi wadah bahan bakar seperti panjang, lebar, tinggi, dan berat secara berturut-turut adalah 40 cm, 20 cm, 20 cm, 2.5 kg.

#### 3. Cetakan

Komponen ini sebagai tempat untuk adonan Kue Balok yang akan dimasak. Sedangkan dimensi cetakan seperti panjang, lebar, tinggi, dan berat secara berturut-turut adalah 40 cm, 20 cm, 5 cm, 4 kg.

#### 4. Penutup

Komponen ini berfungsi sebagai penutup dari adonan kue balok yang telah dituangkan kedalam cetakan. Pada komponen ini juga berfungsi sebagai wadah penyimpanan bahan bakar bagian atas agar kue matang merata juga dibagian atas. Sedangkan dimensi penutup seperti panjang, lebar, tinggi, dan berat secara berturut-turut adalah 40 cm, 20 cm, 15 cm, 3 kg.

#### Data Alat Cetak Kue Balok saat ini

Alat Cetak Kue Balok saat ini terdiri dari 4 komponen, yaitu:

# 1. Meja Penyangga Utama



Gambar 3: Meja Penyangga Utama

#### 2. Wadah Bahan Bakar



Gambar 4: Wadah Bahan Bakar

#### 3. Cetakan



Gambar 5: Cetakan

# 4. Penutup



Gambar 6: Penutup

# Penyusunan HOE Identifikasi Kebutuhan Konsumen

Kebutuhan konsumen berasal dari atribut produk yang telah diturunkan dari aspek ENASE. Pada Tabel 2 ditampilkan kebutuhan konsumen mengenai alat cetak kue balok.

Tabel 2: Kebutuhan Konsumen Alat Cetak Kue Balok

| Daioi | · ·                                                                |
|-------|--------------------------------------------------------------------|
| No    | Customer Needs                                                     |
| 1     | Dimensi Cetakan Presisi                                            |
| 2     | Bahan Alat Cetak Anti Lengket                                      |
| 3     | Bahan Alat Cetak Food Grade                                        |
| 4     | Panas dari alat cetak tidak memapar<br>langsung kepada <i>user</i> |

Tabel 2: Kebutuhan Konsumen Alat Cetak Kue Ralok (Lanjutan)

| Daioi | Daiok (Lanjulan)                            |  |  |  |
|-------|---------------------------------------------|--|--|--|
| No    | Customer Needs                              |  |  |  |
| 5     | Meja mampu disesuaikan tingginya sesuai     |  |  |  |
| 5     | kebutuhan                                   |  |  |  |
| 6     | Alat Cetak aman saat digunakan              |  |  |  |
| 7     | Pegangan dan penutup cetakan tidak panas    |  |  |  |
| 8     | Percikan api dari arang tidak mengenai user |  |  |  |
| 9     | Asap tidak memapar langsung kepada user     |  |  |  |
| 10    | Alat Cetak mudah digunakan                  |  |  |  |
| 11    | Alat Cetak tidak mudah rusak                |  |  |  |
| 12    | Kuantitas lubang kue pada cetakan lebih     |  |  |  |
| 12    | banyak dari umumnya                         |  |  |  |
| 13    | Waktu memasak dapat lebih cepat dari        |  |  |  |
| 13    | umumnya                                     |  |  |  |

# Identifikasi Spesifikasi Teknis Produk

Spesifikasi teknis produk merupakan parameter terukur dari kebutuhan konsumen. Spesifikasi teknis produk terdiri dari dari dua hal, yaitu: metrik dan nilai metrik. Metrik merupakan parameter terukur yang diturunkan dan berasal dari kebutuhan konsumen, sedangkan nilai metrik adalah satuan untuk setiap metrik. Pada Tabel 3 menampilkan spesifikasi teknis produk (metrik) untuk alat cetak kue balok yang akan dirancang.

Tabel 3: Spesifikasi Teknis Alat Cetak Kue Balok

| No | Customer Needs                                                       | Metrik                                 |
|----|----------------------------------------------------------------------|----------------------------------------|
| 1  | Dimensi Cetakan                                                      | Dimensi cetakan                        |
|    | Presisi                                                              | Bentuk cetakan                         |
| 2  | Kuantitas lubang<br>kue pada cetakan<br>lebih banyak dari<br>umumnya | Jumlah penyetak kue                    |
| 3  | Bahan Alat Cetak<br>Anti Lengket                                     | Bahan cetakan                          |
| 4  | Bahan Alat Cetak<br>Food Grade                                       | Bahan cetakan                          |
| 5  | Panas dari alat<br>cetak tidak                                       | Posisi pengalih hawa<br>panas dan asap |
| 3  | memapar<br>langsung kepada                                           | Jumlah pengalih hawa<br>panas dan asap |

| user             | Dimensi pengalih hawa                                      |
|------------------|------------------------------------------------------------|
|                  | panas dan asap                                             |
|                  | Bahan pengalih hawa                                        |
|                  | panas dan asap                                             |
| Meja mampu       | Dimensi meja                                               |
| disesuaikan      | Bentuk meja                                                |
| tingginya sesuai | Jenis penyesuai postur                                     |
| kebutuhan        | meja                                                       |
|                  | Dimensi cetakan                                            |
|                  | Bentuk cetakan                                             |
|                  | Dimensi penutup                                            |
|                  | Bentuk penutup                                             |
| Alat Cetak aman  | Dimensi wadah bahan                                        |
| saat digunakan   | bakar                                                      |
|                  | Bentuk wadah bahan                                         |
|                  | bakar                                                      |
|                  | Dimensi meja                                               |
|                  | Bentuk meja                                                |
|                  | Meja mampu<br>disesuaikan<br>tingginya sesuai<br>kebutuhan |

Tabel 3: Spesifikasi Teknis Alat Cetak Kue Balok

| No  | Customer Needs                    | Metrik                             |  |
|-----|-----------------------------------|------------------------------------|--|
| 110 | Pegangan dan                      | Jenis penahan panas                |  |
| 8   | penutup cetakan<br>tidak panas    | Jumlah penahan panas               |  |
|     | Percikan api dari<br>arang tidak  | Dimensi wadah bahan<br>bakar       |  |
| 9   | mengenai <i>user</i>              | Bentuk wadah bahan<br>bakar        |  |
|     |                                   | Posisi pengalih panas<br>dan asap  |  |
| 10  | Asap tidak<br>memapar             | Jumlah pengalih panas<br>dan asap  |  |
| 10  | langsung kepada<br><i>user</i>    | Dimensi pengalih panas<br>dan asap |  |
|     |                                   | Bahan pengalih panas<br>dan asap   |  |
|     |                                   | Dimensi cetakan                    |  |
|     |                                   | Bentuk cetakan                     |  |
|     |                                   | Dimensi penutup                    |  |
| 11  | Alat Cetak mudah<br>digunakan     | Bentuk penutup                     |  |
|     |                                   | Dimensi wadah bahan<br>bakar       |  |
|     |                                   | Bentuk wadah bahan<br>bakar        |  |
|     |                                   | Dimensi meja                       |  |
|     |                                   | Bentuk meja                        |  |
|     |                                   | Bahan cetakan                      |  |
|     |                                   | Bahan penutup                      |  |
|     | Alat Cetak tidak<br>mudah rusak   | Bahan wadah bahan                  |  |
| 12  |                                   | bakar                              |  |
|     |                                   | Bahan meja                         |  |
|     |                                   | Jangka waktu                       |  |
|     |                                   | perawatan                          |  |
|     |                                   | Bahan cetakan                      |  |
| 10  | 107.14                            | Dimensi cetakan                    |  |
|     | Waktu memasak                     | Jumlah cetakan                     |  |
| 13  | dapat lebih cepat<br>dari umumnya | Bentuk cetakan                     |  |
|     | uan umumnya                       | Bentuk penutup Bentuk wadah bahan  |  |
|     |                                   | Bentuk wadan banan<br>bakar        |  |
|     |                                   | Danai                              |  |

# Hasil dan Pembahasan

# Morphological Chart

Pada morphological chart ditampilkan pengembangan konsep-konsep produk dari beberapa alternatif untuk setiap part response. Alternatif konsep produk ini dikembangkan menjadi maksimum 3 pencapaian alternative konsep produk yang dapat saling dikombinasi. Pada Tabel 4 ditampilkan morphological chart untuk alat cetak kue balok yang dirancang.

Tabel 4: Morphological Chart Alat Cetak Kue Balok

| Part           | Cara Mencapai Part Response |   |   |
|----------------|-----------------------------|---|---|
| Response       | 1                           | 2 | 3 |
| Fleksibilitas  | Persegi                     |   | _ |
| bentuk cetakan | panjang                     | - | - |

Tabel 4: *Morphological Chart* Alat Cetak Kue Balok (Lanjutan)

| Part                                               | Cara Mencapai Part Respons |           |      |
|----------------------------------------------------|----------------------------|-----------|------|
| Response                                           | 1                          | 2         | 3    |
| Panjang wadah bahan bakar                          | 53 cm                      | 161 cm    | -    |
| Lebar wadah<br>bahan bakar                         | 64 cm                      | -         | -    |
| Tinggi wadah<br>bahan bakar                        | 20 cm                      | 25 cm     | -    |
| Panjang<br>cetakan                                 | 49 cm                      | 153 cm    | -    |
| Lebar cetakan                                      | 60 cm                      | -         | -    |
| Tinggi cetakan                                     | 4 cm                       | 8 cm      | -    |
| Fleksibilitas<br>rancangan<br>wadah bahan<br>bakar | Persegi<br>panjang         | -         | -    |
| Fleksibilitas<br>rancangan<br>penutup              | Persegi<br>panjang         | -         | -    |
| Panjang<br>penutup                                 | 49 cm                      | 157 cm    | -    |
| Lebar penutup                                      | 60 cm                      | -         | -    |
| Jenis isolator<br>yang<br>digunakan                | Plastik                    | Kayu      | -    |
| Tinggi meja                                        | 104 cm                     | -         | -    |
| Panjang meja                                       | 57 cm                      | 167 cm    | -    |
| Lebar meja                                         | 68 cm                      | -         | -    |
| Jenis bahan<br>cetakan                             | Alumunium                  | Teflon    | -    |
| Pengencang rangka meja                             | As                         | -         | -    |
| Fleksibilitas<br>penggunaan<br>cetakan             | Diangkat                   | Digeser   | -    |
| Tinggi penutup                                     | 17 cm                      | -         | -    |
| Umur pakai<br>bahan cetakan                        | 5 tahun                    | -         | -    |
| Jenis bahan<br>penutup                             | Besi plat                  | Alumunium | -    |
| Fleksibilitas<br>penggunaan<br>penutup             | Diangkat                   | Statis    | -    |
| Diameter<br>pengalih hawa<br>panas dan<br>asap     | 7 cm                       | 7,5 cm    | 8 cm |

| Tinggi pengalih<br>hawa panas<br>dan asap         | 3 cm      | 3,5 cm    | 4 cm |
|---------------------------------------------------|-----------|-----------|------|
| Umur pakai<br>bahan penutup                       | 5 tahun   | 10 tahun  | 1    |
| Jenis bahan<br>wadah bahan<br>bakar               | Besi plat | Alumunium | ı    |
| Umur pakai<br>bahan pengalih<br>hawa dan asap     | 5 tahun   | 10 tahun  | -    |
| Jenis bahan<br>pengalih hawa<br>panas dan<br>asap | Besi plat | Alumunium | 1    |
| Umur pakai<br>bahan meja                          | 5 tahun   | 10 tahun  | -    |

Tabel 4: *Morphological Chart* Alat Cetak Kue Balok (Lanjutan)

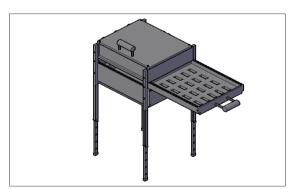
| Part                                     | Cara Mencapai Part Response |           |   |  |
|------------------------------------------|-----------------------------|-----------|---|--|
| Response                                 | 1                           | 2         | 3 |  |
| Jenis bahan<br>meja                      | Besi plat                   | Alumunium | - |  |
| Umur pakai<br>bahan wadah<br>bahan bakar | 5 tahun                     | 10 tahun  | - |  |

# Screening Concept

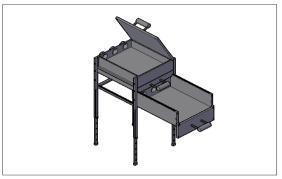
Screening concept merupakan tahapan penilaian terhadap konsep-konsep produk yang mungkin muncul dari kombinasi part response dari morphological chart yang ditampilkan pada Tabel 4. Penilaian ini dilakukan dengan mengidentifikasi kelebihan dan kekurangan alat cetak kue balok saat ini dibandingkan dengan 3 alternatif konsep produk yang menjadi alternatif perancangan alat cetak kue balok dalam penelitian ini. Pada Tabel 5 ditampilkan hasil screening concept untuk alat cetak kue balok terhadap 3 alternatif konsep produk.

Tabel 5: Hasil *Screening Concept* Alat Cetak Kue Balok

| Kriteria Penilaian       | Produk   | ŀ | <b>Conse</b> | р |
|--------------------------|----------|---|--------------|---|
| Killeria Felliaiaii      | saat ini | 1 | 2            | 3 |
| Bentuk cetakan presisi   | 0        | + | +            | + |
| Kuantitas kue dalam      |          |   |              |   |
| satu cetakan lebih       | 0        | + | +            | + |
| banyak                   |          |   |              |   |
| Cetakan anti lengket     | 0        | 0 | +            | + |
| Cetakan food grade       | 0        | 0 | +            | + |
| Hawa panas dapat         | 0        | + | +            | + |
| teralihkan               | U        | т | Т            | т |
| Meja dapat diatur sesuai | 0        | + | +            | + |
| postur tubuh             | U        | т | т            | + |
| Alat masak aman          | 0        | + | +            | + |
| digunakan                | U        |   | Т-           | ۲ |
| Panas pada pegangan      |          |   |              |   |
| cetakan dan penutup      | 0        | + | +            | + |
| dapat dikurangi          |          |   |              |   |
| Percikan bahan bakar     | 0        | + | _            | _ |
| terkurung di dalam       | U        | - | -            | - |


| wadah                 |   |   |    |    |
|-----------------------|---|---|----|----|
| Asap hasil pembakaran | 0 | + |    | _  |
| dapat dialihkan       | U | т | Т- | +  |
| Kemudahan             | 0 | 0 | +  | +  |
| penggunaan alat masak |   |   |    |    |
| Produk tahan lama     | 0 | 0 | 0  | 0  |
| Waktu memasak lebih   | 0 |   | 0  |    |
| cepat                 | U | - | U  | •  |
| Jumlah +              |   | 8 | 11 | 11 |
| Jumlah -              |   | 1 | 0  | 1  |
| Jumlah O              |   | 4 | 2  | 1  |
| Nilai                 |   | 7 | 11 | 10 |
| Peringkat             |   | 3 | 1  | 2  |

# Selecting Concept


Merupakan penilaian dan penentuan alternatif konsep produk berdasarkan bobot masing-masing dari atribut penelitian produk. Dari hasil selecting concept tersebut diperoleh hasil nilai total alternatif 1, 2, dan 3 secara berturut-turut adalah 3,907; 4,180; 4,176. Oleh sebab itu berdasarkan nilai tertinggi maka dipilih alternatif 2 untuk perancangan produk alat cetak kue balok.

# Blueprint Rancangan Produk yang Terpilih

Alternatif yang terpilih untuk produk alat cetak kue balok berdasarkan *screening* dan *selecting concept* adalah alternatif 2. Pada rancangan alternative 2 ini, produk alat cetak kue balok keluar masuk wadah cetakan dan wadah bahan bakar bagian bawah adalah dengan cara menggeser / menarik seperti ditampilkan pada Gambar 7 dan Gambar 8.

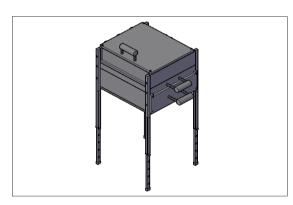


Gambar 7: *Blueprint* Alat Cetak Kue Balok dengan kondisi wadah cetakan terbuka (setelah digeser / ditarik)



Gambar 8: *Blueprint* Alat Cetak Kue Balok dengan kondisi wadah bahan bakar terbuka (setelah digeser / ditarik)

Hasil rancangan wadah bahan bakar dan wadah cetakan digeser ini muncul dalam konsep pada kombinasi teknis pengoperasian alat cetak kue balok dalam *morphological chart*. Ide ini muncul untuk memudahkan mengisi adonan dalam alat cetak kue balok dan mengisi bahan bakar jika habis dipakai.


Alternatif lain yang muncul adalah dengan mengangkat wadah penutup dan wadah bahan bakar. Namun alternatif menggeser wadah ini yang kemudian terpilih dari hasil screening dan selecting concept. Spesifikasi lengkap untuk alat cetak kue balok alternatif 2 yang terpilih berdasarkan part response ditampilkan pada Tabel 6.

Tabel 6: Spesifikasi Rancangan Produk terpilih

| Part Response                                | Spesifikasi Alternatif 2 |  |
|----------------------------------------------|--------------------------|--|
| Fleksibilitas bentuk<br>cetakan              | Persegi panjang          |  |
| Panjang wadah bahan<br>bakar                 | 53 cm                    |  |
| Lebar wadah bahan<br>bakar                   | 64 cm                    |  |
| Tinggi wadah bahan<br>bakar                  | 20 cm                    |  |
| Panjang cetakan                              | 49 cm                    |  |
| Lebar cetakan                                | 60 cm                    |  |
| Tinggi cetakan                               | 8 cm                     |  |
| Fleksibilitas rancangan<br>wadah bahan bakar | Persegi panjang          |  |
| Fleksibilitas rancangan penutup              | Persegi panjang          |  |
| Panjang penutup                              | 49 cm                    |  |
| Lebar penutup                                | 60 cm                    |  |
| Jenis isolator yang<br>digunakan             | Plastik                  |  |
| Tinggi meja                                  | 104 cm                   |  |
| Panjang meja                                 | 57 cm                    |  |
| Lebar meja                                   | 68 cm                    |  |
| Jenis bahan cetakan                          | Teflon                   |  |
| Pengencang rangka<br>meja                    | As                       |  |
| Fleksibilitas penggunaan cetakan             | Digeser                  |  |
| Tinggi penutup                               | 17 cm                    |  |

| Umur pakai bahan<br>cetakan                | 5 tahun   |  |
|--------------------------------------------|-----------|--|
| Tinggi penutup                             | 17 cm     |  |
| Umur pakai bahan<br>cetakan                | 5 tahun   |  |
| Jenis bahan penutup                        | Alumunium |  |
| Fleksibilitas penggunaan penutup           | Statis    |  |
| Diameter pengalih hawa panas dan asap      | 7,5 cm    |  |
| Tinggi pengalih hawa<br>panas dan asap     | 3,5 cm    |  |
| Umur pakai bahan<br>penutup                | 5 tahun   |  |
| Jenis bahan wadah<br>bahan bakar           | Alumunium |  |
| Umur pakai bahan<br>pengalih hawa dan asap | 5 tahun   |  |
| Jenis bahan pengalih hawa panas dan asap   | Alumunium |  |
| Umur pakai bahan meja                      | 5 tahun   |  |
| Jenis bahan meja                           | Alumunium |  |
| Umur pakai bahan<br>wadah bahan bakar      | 5 tahun   |  |

Secara utuh *blueprint* alat cetak kue balok dalam keadaan tertutup yang dirancang dalam penelitian ini ditampilkan pada Gambar 9.



Gambar 9: Blueprint Alat Cetak Kue Balok

#### Kesimpulan

Alat cetak kue balok yang ada saat ini merupakan alat cetak kue balok yang memungkinkan munculnya cidera bagi para produsen alat cetak kue balok. Cidera atau risiko yang mungkin dialami oleh produsen

dalam menggunakan alat cetak tersebut, diantaranya: pinggang dan punggung yang sakit karena terlalu sering membungkuk, panas yang yang langsung memapar produsen kue balok yang berasal dari arang sebagai bahan bakar alat cetak kue balok, tidak adanya bahan isolator pada pegangan alat cetak kue balok, sehingga produsen biasanya menambah kain sebagai bahan isolatorya. dll. Dalam upaya mengurangi risiko kecelakaan kerja tersebut, dilakukan perancangan alat cetak kue balok dengan menerapkan metode EFD dimana memperhatikan aspek-aspek ergonomi, yaitu: ENASE (Efektif, Nyaman, Aman, Sehat, dan Efisien).

#### **Daftar Pustaka**

Ariani, D. W., M. Ali. 2002. Manajemen Kualitas: Pendekatan Sisi Kualitatif. Direktorat Jenderal Pendidikan Tinggi, Departemen Pendidikan Nasional, Yogyakarta.

Cohen , L. 1995. Quality Function Deployment: How To Make QFD Work For You. Addison Wesley

Marimin, 2004. Teknik dan Aplikasi Pengambilan Keputusan Kriteria Majemuk. Grasindo. Jakarta.

Rampersad, Hubert K. 2006. *Total Performance Scorecard*. Gramedia Pustaka Utama. Jakarta.

Ulrich, K.T., S. D. Eppinger, 2001. Product Design and Development, 2<sup>nd</sup> edition. Singapore. Mc Graw Hill.

Wibowo, D.P. 2010. Perancangan Ulang Desain Kursi Penumpang Mobil Land Rover yang ERgonomis dengan Metode Ergonomic Function Deployment (EFD). Tugas Akhir. Teknik Industri. Universitas Pembangunan Nasional. Yogyakarta.